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1. INTRODUCTION

If p is a polynomial of degree k or less whose modulus is bounded by one
on [—1, 1], then

4 2
ax [P0 < k. (L.1)

This result was first proved by A. Markov [7] and later generalized for
higher derivatives by W. Markov [8]. Equality occurs in (1.1) if and only if
p is the kth Tchebycheff polynomial of the first kind. Duffin and Schaeffer [1]
demonstrated a more fundamental connection between (1.1) and the
Tchebycheff polynomials: One need only assume |p(cos[rm/k])| < 1,
v =0, 1,..., k, in order for the same conclusion to hold. Modifications of (1.1)
have been studied by Hille, et al. [3], Scheick [9], and others. Observe that
if | p(®)| < 1 for t € [—d, d], then

2

>

POl <=, tel—dd] (1.2)

oy

Inequality (1.2) is essential in the study of oscillatory properties of poly-
nomials. During the author’s investigation of numerical integration in several
variables [11], a multidimensional analog was required; it was given for
arbitrary convex, compact sets in Euclidean n-space. That result is improved
in this paper, using a considerably simplified approach.

O. D. Kellogg [6] obtained an analog of (1.2) for the sphere in E, . His
bound is sharp, and to the author’s knowledge this is the only other extension
of the Markov inequality to several dimensions.

* This work formed a part of the author’s Ph.D. thesis completed at Brown University,
Division of Applied Mathematics, and supported by an NDEA Title IV Fellowship.
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2. PRELIMINARIES

Throughout this paper T will be a compact, convex set in E, with boundary
OT and nonempty interior T°. The Euclidean norm of an n-vector v will be
denoted by | v |, and we shall define set-related norms for a continuously
differentiable function p and its gradient Vp by

Ipllr = max | p(t) @1
and
I Vp llr = max || Vp(®)l. 2.2)

Let &, r be the set of algebraic polynomials of total degree & or less in n
variables which satisfy the condition

tpllr <1, PEPyr. 2.3
For k =1, 2,..., define
Myr = max{| Vplr,p € Prrh

which we shall refer to as Markov numbers. Our aim is to find upper bounds
for the Markov numbers. (For a general exposition of multivariate poly-
nomials, the reader is referred to Hirsch [4], Stroud [10], and Jackson [5].)

Fix ¢, € 9T, let u be a unit vector, and consider the hyperplane with normal
u (see Goldstein [2])

%E{tEEn:(t_toau) = 0},

where (', -) denotes scalar product. 5, is a support hyperplane of T at ¢,
if and only if it contains no interior points of 7. One may arrange things so
that (¢, u) << 0 when ¢ e T, in which case u is called an outer normal to T
at f,. The following facts are easily verified and will be used later (recall
that T is convex).

(i) If ¢, € 0T, there exists at least one support hyperplane for T at ¢,.

(ii) For any direction u, there exist precisely two support hyperplanes
of T, one with outer normal u# and the other with outer normal —u. They
are separated by a distance A, > 0.

(i) If 4, is not a support hyperplane, then one can find two points
t; and £, in T such that (¢, —¢#,,u) <0 and (¢, — ¢y, ¥) >0, where
toeH, N OT.

(iv) If the distance of 7 from J, is dand t, € 5, , then |(t — ¢,, u)| = d.
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DerniTion 2.1.  Define the width of T to be

or = i A
Note that wr > 0, given our assumptions on 7.
Finally, we shall use the two properties of polynomials listed below.

(v) Fix tyeE,. If p(t) is of degree k or less in »n variables, then
p(ty + Au) is of degree k or less in A

(vi) Let u be a unit vector. The derivative of p at ¢, in the direction u
is given by

Pulte) = -ty + ) g = (V{10 ).

3. DERIVATION OF BOUNDS

LemMA 3.1. Given pe Py, let t*e T satisfy | Vp®)| =| Vplr. If
also | p(t*)| = 1, then

2k
I Vplir < o 3.1
T

Proof. We omit the trivial case when p is constant. Since | p(¢)| cannot
exceed 1, we must have * € T. Let u = Vp(t¥)/|| Vp(t*)|, and let o€, be
the hyperplane with normal u which passes through t*. We claim 5, is a
support hyperplane of T. If not, and if p(¢*¥) = 1, we can find a point , € T
for which by (vi) p,(t*) = (Vp(t*), v) > 0, where v = (¢, — t¥)/| ; — t*|.
Since this implies | p(#)| must exceed 1 somewhere on the segment [t*, ],
we have a contradiction. The case p(t*) = —1 follows similarly.

Now, assume u is an outer normal for T (or arrange things so), and let
H# ,, be the support hyperplane with outer normal —u lying a distance A,
from 5,. Let t,e#, N T. The line segment [f,, t*] lies in T, and
p(t* + Aw), where w = (t, — t¥)/|| t, — ¢* ||, is a polynomial in A of degree k
or less which is bounded by 1 on [0,]| f, — #*||]. Since polynomials are
translation invariant, inequality (1.2) yields

2
T 2 |2 = (9%, v |
_ A VRl
2o — £* i
wr || Vp(*)l
Z Tto— 51

from which (3.1) follows.
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THEOREM 3.1. Ifpe P, ;, then
4k
IVplr < P 3.2)
T

Proof. Find t* e T such that || Vp(t*)]| = | Vp|r and assume p is not
constant. If |p(t*)] =1, we cite the previous Lemma. Otherwise, let
u = Vp(t*)/| Vp(t*)|. Let 5, and £, be the support hyperplanes of T with
outer normals ¥ and —u, respectively. Let tpe#, N T and e, N T.
Clearly t* must be a distance (A,/2) > (wy/2) or more from 5, or ¢, .
Suppose it is 5%, . Since | p(t*)| < 1, we may travel a little distance from #*
in the direction (t* — ¢,) to a point 75 such that

(a) ]p(t)l <1lon [to ’ ta] and
(b) the distance of t; from 4, is A; > wy/2.

We now repeat the argument of Lemma 3.1 to get

2k ty —
— = > ([ Vp(H), —
et = (e =)
_ Al Vp(e)l
s — Lol
wr || Vp(*)|
= 20t — 5]l -
THEOREM 3.2.
2
Mo<¥® 10 (3.3)
wr

Proof. If k =1, we note that || Vp|r is a continuous function on the
compact set ;. The rest follows from Theorem 3.1.

4. A SHARPNESS CONJECTURE

For the unit ball B C E, Kellogg [6] showed that M, < k%. This is made
sharp by the extremal polynomials cos[k cos—! A(¢)], where A(z) is the signed
distance of ¢ from a fixed hyperplane passing through the center of B. Note
that wp = 2, so that the bound of Theorem 3.2 differs from M, by a factor
less than 2.

We conjecture that for arbitrary convex, compact T, M; = 2k?/w;,
k=0,1,2,... This is equivalent to proposing that there always exists an
extremal polynomial p and a point t* € T such that M, = | Vp(t¥)| and

| p() = 1.

640[/11/3-2
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m

A stronger conjecture would be the following: Any extremal polynomial
ust attain its maximum derivative value and maximum magnitude coinci-

dentally at some point in @T. This property is satisfied by the Tchebycheff
polynomials mentioned above. It would be interesting to determine whether
or not these are the only extremal polynomials.
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